Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.13.583470

ABSTRACT

Non-structural protein 10 (nsp10) and non-structural protein 16 (nsp16) are part of the RNA synthesis complex, which is crucial for the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nsp16 exhibits 2-O-methyltransferase activity during viral messenger RNA capping and is active in a heterodimeric complex with enzymatically inactive nsp10. It has been shown that inactivation of the nsp10-16 protein complex interferes severely with viral replication, making it a highly promising drug target. As information on ligands binding to the nsp10-16 complex (nsp10-16) is still scarce, we screened the active site for potential binding of drug-like and fragment-like compounds using X-ray crystallography. The screened set of 244 compounds consists of derivatives of the natural substrate S-adenosyl methionine (SAM) and adenine derivatives, of which some have been described previously as methyltransferase inhibitors and nsp16 binders. A docking study guided the selection of many of these compounds. Here we report structures of binders to the SAM site of nsp10-16 and for two of them, toyocamycin and sangivamycin, we present additional crystal structures in the presence of a second substrate, Cap0-analog/Cap0-RNA. The identified hits were tested for binding to nsp10-16 in solution and antiviral activity in cell culture. Our data provide important structural information on various molecules that bind to the SAM substrate site which can be used as novel starting points for selective methyltransferase inhibitor designs.


Subject(s)
Coronavirus Infections
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.17.468943

ABSTRACT

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to aid coronaviruses in evading the hosts innate immune responses. We established a high-throughput X-ray screening to identify inhibitors by elucidating the native PLpro structure refined to 1.42 Angstroms and performing co-crystallization utilizing a diverse library of selected natural compounds. We identified three phenolic compounds as potential inhibitors. Crystal structures of PLpro inhibitor complexes, obtained to resolutions between 1.7-1.9 Angstroms, show that all three compounds bind at the ISG15/Ub-S2 allosteric binding site, preventing the essential ISG15-PLpro molecular interactions. All compounds demonstrate clear inhibition in a deISGylation assay, two exhibit distinct antiviral activity and one inhibited a cytopathic effect in a non-cytotoxic concentration range. These results highlight the druggability of the rarely explored ISG15/Ub-S2 PLpro allosteric binding site to identify new and effective antiviral compounds. Importantly, in the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL